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Abstract
In this paper, we study homogeneous complex Finsler spaces. We first prove
that each homogeneous complex Finsler space can be written as a coset space of
a Lie group with an invariant complex structure as well as an invariant complex
Finsler metric. We then introduce the notion of Minkowski representations
of Lie groups and Lie algebras to give a complete algebraic description for
such spaces. Finally, we study symmetric complex Finsler spaces and obtain a
complete classification of such spaces.

PACS numbers: 02.20.Tw, 02.40.−k, 02.40.Pc, 02.40.Sf, 02.40.Vh
Mathematics Subject Classification: 53C60, 58B20, 22E46

1. Introduction

As pointed out by S S Chern, Finsler geometry is just Riemannian geometry without the
quadratic restriction [5]. Recently, the study of Finsler geometry has been enhanced by the
works of many geometers. In particular, the publications of a series of substantial books
(cf [3, 6, 14]) have attracted more and more people to this field. The study of Finsler spaces
has many applications in physics and biology [2]. As pointed out by Ingarden, in an anisotropic
medium, the speed of light depends on its direction of travel. At each location x, visualize y

as an arrow that emanates from x. Measure the time light takes to travel from x to the tip of y,
and call the result F(x, y). Then

∫ b

a
F (x, y) represents the total time light takes to traverse a

given path in this medium.
This paper is a continuation of our previous work [8]. In this paper, we will study

invariant complex Finsler metrics on a homogeneous complex manifold. The study of invariant
structures on homogeneous spaces is an important problem in geometry as well as in many
branches of mathematics. The most remarkable work is due to Cartan, who established
the theory of Riemannian symmetric spaces and particularly gave a complete classification
of Riemannian symmetric spaces. Other classical and important works include the theory
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of homogeneous Riemannian manifolds, homogeneous complex manifolds, homogeneous
Kähler manifolds and homogeneous symplectic manifolds. These facts justify our motivation
to study invariant Finsler metrics on homogeneous manifolds. The real case was studied in
[8]. The purpose of this paper is to study in some detail the complex case.

The main results of this paper can be summarized as follows. We first prove that a
homogeneous complex Finsler space can be written as a coset space. Then we introduce a new
definition—Minkowski representations of Lie groups and Lie algebras—to give a sufficient
and necessary condition for a coset space to admit the structure of the homogeneous complex
Finsler space. When the groups are complex Lie groups, the treatment is similar to the real
case. But there exists homogeneous complex spaces which cannot be written as the coset space
of a complex Lie group. This case is specially treated and we also get a complete algebraic
description. Finally, we study symmetric complex Finsler spaces and obtain a complete list
of the manifolds, which admits the structure of symmetric complex non-Riemannian Finsler
spaces.

The arrangement of the paper is as follows. In section 1, we give the fundamental
definitions and study homogeneous complex Finsler spaces. In section 2, we introduce
the notion of Minkowski representation of Lie groups and Lie algebras; some interesting
examples are also given. In section 3, we use the notion of Minkowski representations to give
an algebraic description of invariant complex Finsler metrics on homogeneous manifolds.
Finally, in section 4, we study symmetric complex Finsler spaces.

2. Homogeneous complex Finsler manifolds

A complex Finsler manifold (M, J, F ) is a (connected) complex manifold (M, J ) endowed
with a complex Finsler metric F [1]. Here, by a complex Finsler metric, we mean a continuous
function F : T M → R

+ (where Tx(M), x ∈ M is viewed as a complex vector space) which
satisfies the following conditions:

(1) F is smooth on T M − {0};
(2) F(u) > 0,∀u �= 0;
(3) F(λu) = |λ|F(u) for any λ ∈ C

∗.

The restriction of F to any TxM is a complex Minkowski norm, i.e., a functional on the
complex vector space TxM which is smooth on TxM −{0} and satisfies conditions (2) and (3).
In this paper, we will only consider those complex Finsler metrics which are strongly convex
as a real Finsler metric. Namely, let x ∈ M and v1, v2, . . . , v2m be a basis of Tx(M) over the
field of real numbers. For y = yjvj ∈ Tx(M), write F(y) = F(y1, y2, . . . , y2m). Then the
Hessian matrix

(gij ) = (
1
2

[
F 2

yiyj

])
is positive definite at any point in Tx(M) − {0}. Therefore, F is a real Finsler metric in the
usual sense [3].

We first give some examples of complex Minkowski norms and complex Finsler metrics.

Example 1.1. Let (M, J, g) be a Hermitian manifold. Then it is obvious that the function F
defined by

F(v) =
√

g(v, v)

is a complex Finsler metric on (M, J ). In this case F is called associated with the Hermitian
metric g.
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Example 1.2. Let us give an example which is not associated with any Hermitian metric. Let
n � 2. Then in the linear vector space C

n, we define

F(x) =
√

|x1|2 + |x2|2 + · · · + |xn|2 + s
√

|x1|2s + |x2|2s + |xn|2s ,

where x = (x1, x2, . . . , xn) ∈ C
n, | · | denotes the length of a complex number and s � 2 is an

integer. Then it is easily seen that F is a complex Minkowski norm which is not the norm of
any Hermitian form. In an obvious way, we can view (Cn, F ) as a complex Finsler manifold.
Then F is not associated with any Hermitian metric on C

n.

Let (M, J, F ) be an n-dimensional complex Finsler manifold. Then (M,F ) is a 2n-
dimensional real Finsler space. In [7], we studied the group of isometries of a Finsler space.
We proved that a mapping σ of M into itself is an isometry (i.e., F is a diffeomorphism such that
F(dσ(y)) = F(y),∀y ∈ T M) of (M,F ) if and only if σ is a distance-preserving mapping of
M onto itself. Using this result, we proved that the group of isometries of (M,F ), denoted by
I (M,F ), is a Lie transformation group of M with respect to the compact-open topology and
for any x ∈ M , the isotropy subgroup Ix(M,F ) at x is a compact subgroup of I (M,F ). In
the complex case, a diffeomorphism τ of M is called holomorphic if dτ ◦ J = J ◦ dτ . The
set of all holomorphic isometries of (M, J, F ) forms a group, denoted by A(M, J, F ). It is
obvious that A(M, J, F ) is a closed subgroup of I (M,F ). Therefore, by the classical result
of Lie group theory (cf [10]), we have

Proposition 1.1. The group A(M, J, F ) of holomorphic isometries of (M, J, F ) is a Lie
transformation group of M with respect to the compact-open topology. For any x ∈ M , the
isotropy subgroup Ax(M, J, F ) at x is a compact subgroup of A(M, J, F ).

Definition 1.1. A complex Finsler manifold (M, J, F ) is called homogeneous if the group of
holomorphic isometries A(M, J, F ) acts transitively on M.

By a classical result on homogeneous manifolds [10], we have

Proposition 1.2. Let (M, J, F ) be a homogeneous complex Finsler manifold. Then (M, J, F )

can be written as a coset space G/H , where G = A0(M, J, F ) is the unity component of the
group A(M, J, F ) of holomorphic isometries and H = A0

x(M, J, F ) is the isotropy subgroup
of A0(M, J, F ) at x ∈ M .

As an application of the above propositions, we can prove

Theorem 1.3. Let (M, J, F ) be a homogeneous complex Finsler manifold. Then there exists
a Riemannian metric g on M such that (M, J, g) is a homogeneous Hermitian manifold.

Proof. By proposition 1.2, M can be written as the coset space G/H of a Lie group G with
G-invariant complex structure J and complex Finsler metric F. Let o = eH be the origin of
G/H and V = To(G/H). It is shown in [7] that the group K of linear isometries of the (real)
Minkowski space (V , F ) is a compact subgroup of GL(V ). Fix any inner product 〈, 〉0 on V ,
we define an inner product 〈, 〉 by

〈u, v〉 =
∫

K

(〈Ad(k)u, Ad(k)v〉0 + 〈J (Ad(k)u), J (Ad(k)v)〉0) dk,

where dk is the standard invariant Haar measure of K. It is obvious that 〈, 〉 is K-invariant, since
H ⊂ K, 〈, 〉 is also H-invariant. Therefore 〈, 〉 can be extended to a G-invariant Riemannian
metric g on G/H [11]. By the definition, it is easy to check that

g(JX, JY ) = g(X, Y )
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for any X, Y ∈ Tx(G/H), x ∈ G/H . Therefore (G/H, J, g) is a homogeneous Hermitian
manifold. �

By the results of this section, to study homogeneous complex Finsler manifolds we only
need to consider coset spaces.

3. Minkowski representation of Lie groups and Lie algebras

To study the invariant Finsler metric on coset spaces, we have introduced several new notions
such as Minkowski Lie pairs [8], Minkowski Lie algebras [8], Minkowski symmetric Lie
algebras [9]. In this paper, we use a unified method to describe these notions. This will be
useful to describe homogeneous complex Finsler spaces. In the following, vector spaces are
assumed to be finite dimensional.

Definition 2.1. Let G be a Lie group and (V , ρ) be a (real or complex) representation of G. If
F is a (real or complex) Minkowski norm on V such that

F(ρ(g)v) = F(v), ∀g ∈ G, v ∈ V.

Then we call (V , ρ, F ) a Minkowski representation of G.

To define the notion of Minkowski representations of Lie algebras, we need to recall some
notations. Let (V , F ) be a (real or complex) Minkowski space. Then we have two tensors,
namely the fundamental form {gy}, y ∈ V − {0} and the Cartan torsion {Cy}, y ∈ V − {0}.
They are defined by

gy(u, v) = 1

2

[
∂2F 2(y + su + tv)

∂s∂t

] ∣∣∣∣
s=t=0

, y �= 0, u, v ∈ V,

Cy(u, v,w) = 1

4

[
∂3F 2(y + su + tv + rw)

∂s∂t∂r

] ∣∣∣∣
s=t=r=0

, y �= 0, u, v,w ∈ V.

Definition 2.2. Let g be a (real or complex) Lie algebra. Then a Minkowski representation of
g is a representation (V , φ) of g with a (real or complex) Minkowski norm F on the (real or
complex) vector space V such that

gy(φ(x)u, v) + gy(u, φ(x)v) + 2Cy(φ(x)y, u, v) = 0,

for any x ∈ g, y( �= 0), u, v ∈ V . We usually denote the Minkowski representation by
(V , φ, F ).

Since a complex vector space can be viewed as a real vector space, we can consider the
representation of a real Lie algebra g on a complex vector space V , where V is viewed as
a real vector space and is denoted by VR. Therefore, we can define the notion of complex
Minkowski representations of a real Lie algebra. We first give some examples of Minkowski
representations.

Example 2.1. Let G be a Lie group, and H be a closed connected subgroup of G. Lie HG = g,
Lie H = h. Suppose F is a Minkowski norm on the quotient space g/h such that (g, h, F ) is
a Minkowski Lie pair [8]; that is,

gy(adg/h(x)(u), v) + gy(u, adg/h(x)v) + Cy(adg/h(x)y, u, v) = 0,

for any y( �= 0), u, v ∈ g/h, x ∈ h, where adg/h is the representation of h on g/h induced by the
adjoint representation. Then it is obvious that (g/h, adg/h, F ) is a Minkowski representation
of h. It is proved in [8] that in this case (g/h, Adg/h, F ) is a Minkowski representation of H.
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Example 2.2. Let (g, F ) be a Minkowski Lie algebra [8]; that is, g is a real Lie algebra, F is
a Minkowski norm on g and the following condition is satisfied:

gy([x, u], v) + gy(u, [x, v]) + 2Cy([x, y], u, v),

where y( �= 0), x, u, v ∈ g. Then it is easily seen that (g, ad, F ) is a Minkowski representation
of g, where ad is the adjoint representation of g.

Example 2.3. Let (g, σ, F ) be a Minkowski symmetric Lie algebra [9]; that is, g is a real Lie
algebra, σ is an involutive automorphism of g with canonical decomposition g = k + p, F is a
Minkowski norm on p and the following condition is satisfied:

gy([x, u], v) + gy(u, [x, v]) + 2Cy([x, y], u, v), y( �= 0), u, v ∈ p, x ∈ k.

Then it is easily seen that (p, ad, F ) is a representation of k, where ad is the adjoint
representation of k on p (cf [10]).

Example 2.4. Let us give an explicit example of the Minkowski representation of a Lie group
as well as its Lie algebra. Consider the classical simple group G = SU(n) with n � 3. On
the Lie algebra su(n), for each positive real number λ, we define

Fλ(A) =

√√√√√
√√√√ n∑

i=1

|µi(A)|4 + λ

n∑
i=1

|µi(A)|2,

where µi(A), i = 1, 2, . . . , n are all the eigenvalues of A and | · | is the length function,
A ∈ su(n). It is easy to check that (su(n), Ad, Fλ) are a series of Minkowski representations
of G which are not isomorphic to each other. By theorem 2.1, (su(n), ad, Fλ) are Minkowski
representations of su(n).

The relation between Minkowski representations of Lie groups and Lie algebras is as
follows:

Theorem 2.1. Let G be a Lie group with Lie algebra g. If (V , ρ, F ) is a (real) Minkowski
representation of G, then (V , dρ, F ) is a Minkowski representation of g. On the other hand, if
(V , φ, F ) is a Minkowski representation of g and G is connected, then there exists a Minkowski
representation (V , ρ, F ) with φ = dρ.

Proof. The proof is similar to the special case of example 2.1, which can be found in our
previous paper [8]. �

We also have the following:

Theorem 2.2. Let G be a Lie group and (V , ρ, F ) be a real (complex) Minkowski
representation of G. Then there exists an inner product (Hermitian inner product) 〈, 〉 on
V such that (V , ρ, 〈, 〉) is an orthogonal (unitary) representation of G.

Proof. Similar to theorem 1.3. Just note that ρ(G) is contained in the group K of linear
isometries of (V , F ), which is a compact subgroup of GL(V ). �
Remark. The study of Minkowski representations should be an interesting problem in
representation theory and it deserves research. According to some authors, the spacetime
structure is not only in a state described by Riemannian geometry, but also in a state described
by Finsler geometry [4]. Thus we should not restrict us to the quadratic case. As an
interesting problem, we hope to find out a sufficient and necessary condition that in a unitary
representation (V , ρ, 〈, 〉) there exists a non-quadratic Minkowski norm F such that (V , ρ, F )

is a Minkowski representation. The notion of Minkowski representation can be generalized to
the infinite-dimensional case.
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4. Complex structures

In this section, we will use the notion of Minkowski representations of Lie groups and Lie
algebras to study homogeneous complex Finsler spaces. By proposition 1.2, we only need to
study the invariant structures on a coset space G/H , where G is a connected Lie group and H
is a closed subgroup of G.

We first consider the special case when G is a complex Lie group; that is, G is a (abstract)
group as well as a complex manifold and the mapping (x, y) 
→ xy respectively x 
→ x−1 is a
holomorphic mapping from G × G respectively G to G. As a manifold, G can be viewed as a
real smooth manifold, denoted by GR. Then GR with the original group operation is a real Lie
group. The Lie algebra gR has a natural complex structure I. Therefore gR can be viewed as a
complex Lie algebra, which we denote by g and call the complex Lie algebra of the complex
Lie group G.

Let G be a complex Lie group and H be a closed complex subgroup of G. Then it is
easily seen that the coset space G/H has a natural complex structure I such that (G/H, I)

is a homogeneous complex manifold. Identifying the tangent space To(G/H) of G/H at the
origin o = eH with the quotient space g/h, we have

Theorem 3.1. Let G be a complex Lie group and H be a closed complex subgroup of G. If F is
a complex Finsler metric on G/H such that (G/H, I, F ) is a homogeneous complex Finsler
manifold, then (g/h, adg/h, Fo) is a Minkowski representation of h. On the other hand, if F∗ is
a complex Minkowski norm on g/h such that (g/h, adg/h, F∗) is a Minkowski representation
of h and the subgroup H is connected, then there exists a complex Finsler metric F on G/H

such that F∗ = Fo and (G/H, I, F ) is a homogeneous complex Finsler manifold.

Proof. The proof is similar to the real case, see [8]. �

Theorem 3.1 gives a complete description of the structure of invariant complex
homogeneous Finsler metrics on the coset spaces of complex Lie groups. However, not
every complex homogeneous manifold can be written as a coset space of a complex Lie group.
Let us give an example.

Example 3.1. Consider a bounded domain D in C
n. The group of holomorphic

diffeomorphisms of D onto itself, denoted by H(D), is a real Lie group [10]. If the action of
H(D) on D is transitive, then D is a homogeneous complex manifold, called a homogeneous
bounded domain. However, in this case, there cannot be any complex structure on H(D)

which makes H(D) a complex Lie group. In fact, if H(D) is a complex Lie group, then the
orbit of any one-parameter subgroup of H(D) is bounded. According to Liouville’s theorem,
any bounded holomorphic function on C is a constant. This means that the orbit of any
one-parameter subgroup of H(D) consists of one single point, contracting the fact that H(D)

acts transitively on D.

Therefore, to obtain a complete algebraic description of all the complex homogeneous
Finsler spaces, we have to consider every coset space G/H , where G is a real Lie group, and
H is a closed subgroup of G. In the following, we will find a sufficient and necessary condition
for such a coset space to have a complex structure and an invariant complex Finsler metric
simultaneously.

In the following, we will encounter several representations of a Lie algebra h which are all
induced by the adjoint representation. To keep the notation simple, we sometimes denote such
representations simply by ad. Moreover, for a linear transformation T on a real vector space
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V , we use T C to denote the induced complex linear transformation on the complexification
V C .

Theorem 3.2. Let G be a (real) Lie group, H be a closed subgroup of G, Lie G = g, Lie H = h.
If I is a complex structure on G/H and F is a Finsler metric on G/H such that (G/H, I, F ) is
a homogeneous complex Finsler space, then there exists a complex subalgebra a of the complex
Lie algebra gC (complexification of g) satisfying a ∩ ā = hC, a + ā = gC and a complex
Finsler metric F1 on a/hC such that (a/hC, ad, F1) is a Minkowski representation of h. On the
other hand, if there exists a complex subalgebra a of gC satisfying a ∩ ā = hC, a + ā = gC and
a complex Minkowski norm F1 on a/hC such that (a/hC, ad, F1) is a Minkowski representation
of h and if, moreover, H is connected, then there exists a complex structure I on G/H and a
complex Finsler metric F on G/H such that (G/H, I, F ) is a homogeneous complex Finsler
space.

Proof. First suppose that I is a G-invariant complex structure on G/H and F is a Finsler
metric on G/H such that (G/H, I, F ) is a homogeneous complex space. Then I corresponds
to a Koszul operator J [12, 13] which is a linear transformation of g such that there exists a
subspace m satisfying

g = h + m (direct sum of subspaces)

and J (h) = 0, J (m) ⊂ m, J 2|m = −id. Moreover, we also have

π(JX) = Io(π(X)), X ∈ g,

Ad(h)J ≡ J Ad(h), (mod h), ∀h ∈ H,

where o is the origin of G/H and π is the natural projection of g to g/h. Now we extend J to
a complex linear transformation JC of gC = hC + mC . Define

n± = {X ∈ gC |JC(X) = ±√−1X}.
It is easily seen that n± ⊂ mC. Let a = hC + n+. Then it is easily seen that ā = hC + n−.
Therefore we have a ∩ ā = hC, g = a + ā. Furthermore, by the definition of a, for any
X ∈ hC, Y ∈ a, we have

IC
o πC([X, Y ]) = IC

o πC(ad(X)Y )

= IC
o ad(X)πC(Y ) = ad(X)IC

o (πC(Y )).

Since πC(Y ) ∈ n+, we have IC
o (πC(Y )) = √−1πC(Y ). Thus

IC
o (πC([X, Y ])) = √−1 ad(X)πC(Y ) = √−1πC([X, Y ]).

Therefore, we have πC([X, Y ]) ∈ n+. Hence [X, Y ] ∈ a; that is,

[hC, a] ⊂ a.

Now for any Y1, Y2 ∈ a, we have

JC[Y1, Y2] = √−1[Y1, Y2] (mod hC).

Combining this fact with [hC, a] ⊂ a, we see that a is a complex subalgebra of gC .
Now the Finsler metric F on G/H defines a Minkowski norm on the vector space

To(G/H). Identifying g/h with To(G/H), we obtain a Minkowski norm F ∗ on g/h which
satisfies

F ∗(ax + bIo(x)) =
√

a2 + b2F(x), x ∈ g/h, a, b ∈ R,

F ∗(Ad(h)x) = F(x), h ∈ H, x ∈ g/h.
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Now we extend F ∗ to a Minkowski norm on (g/h)C = gC/hC (denoted by F ∗
1 ) by

F ∗
1 (x +

√−1y) =
√

(F ∗(x))2 + (F ∗(y))2, x, y ∈ g/h.

It is obvious that

F ∗
1

((
aid + bIC

o

)
x
) =

√
a2 + b2F ∗

1 (x), x ∈ gC/hC, a, b ∈ R.

Let F1 be the restriction of F ∗
1 to a/hC . Then by the definition, we see that F1(Ad(h)(x)) =

F1(x),∀x ∈ a/hC, h ∈ H . On the other hand, for any a, b ∈ R, x ∈ a, we have

F1((a + b
√−1)πC(x)) = F1(π

C((a + bJC)x))

= F1
((

a + bIC
o

)
πC(x)

) =
√

a2 + b2F1(π
C(x)).

Therefore F1 is a complex Minkowski norm on a/hC . Since F1 is invariant under
H, (a/hC, Ad, F1) is a Minkowski representation of H. By theorem 2.1, (a/hC, ad, F1) is
a Minkowski representation of h.

Conversely, if there exists a complex subalgebra a satisfying gC = a+ ā, a∩ ā = hC and a
complex Minkowski norm F1 on a/hC such that (a/hC, ad, F1) is a Minkowski representation
of h, then we have a direct decomposition

(g/h)C = πC(a) + πC(ā).

Since πC(ā) = πC(a), we can define a (real) linear transformation Io on the real vector space
g/h such that IC

o

∣∣
πC(a)

= √−1id, IC
o

∣∣
πC(ā)

= −√−1id. Then it is known that Io can be
extended to an almost complex structure I on G/H and, moreover, I is integrable if and only
if a is a subalgebra of gC [12]. Thus we have defined a complex structure on G/H . Now we
extend the Minkowski norm F1 (denoted by F ∗

1 ) to gC/hC = (g/h)C by

F ∗
1 ((x + hC) + (ȳ + hC)) =

√
(F1(x + hC))2 + (F1(y + hC))2, x, y ∈ a.

It is easily seen that F ∗
1 is a complex Minkowski norm on gC/hC . Let Fo be the restriction of

F ∗
1 to g/h, and for x ∈ g let

πC(x) = (x1 + hC) + (x̄2 + hC),

where x1, x2 ∈ a. Then for any a, b ∈ R, we have

F((a + b
√−1)π(x)) = Fo((a + bIo)π(x))

= F ∗
1

((
a + bIC

o

)
πC(x)

) = F ∗
1

((
a + bIC

o

)
((x1 + hC) + (x̄2 + hC))

)
= F ∗

1 ((a + b
√−1)(x1 + hC) + (a − b

√−1)(x̄2 + hC))

=
√

(F1((a + b
√−1)(x1 + hC)))2 + (F1((a − b

√−1)(x̄2 + hC))2

=
√

(a2 + b2)(F1(x1 + hC))2 + (a2 + b2)(F1(x̄2 + hC))2

=
√

a2 + b2
√

(F1(x1 + hC))2 + (F1(x̄ + hC))2

=
√

a2 + b2F1(π
C(x)) =

√
a2 + b2Fo(π(x)).

Therefore, Fo is a complex Minkowski norm on g/h (with respect to the complex structure
Io). On the other hand, since (a/hC, ad, F1) is a Minkowski representation of h, we easily see
that (g/h, ad, Fo) is a Minkowski representation of h. Since H is connected, (g/h, Ad, Fo)

is a Minkowski representation of the group H. Thus we can define a complex Finsler metric
F on G/H which is invariant under the action of G [8]. Consequently (G/H, I, F ) is a
homogeneous complex space. �

Remark. In some special cases, we a priori have an invariant complex structure on G/H .
In this case, to make G/H a homogeneous complex Finsler space, we only need to find an
invariant complex Finsler metric on G/H .
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5. Symmetric spaces

In this section, we study complex symmetric Finsler spaces. Let (M, I, F ) be a complex
Finsler space. Then (M, I, F ) is called (globally) symmetric if for any point x ∈ M there
exists an involutive holomorphic isometry σx of M such that x is an isolated fixed point of
σx . It is easily seen that in this case, the group A(M, I, F ) acts transitively on M. Hence
(M, I, F ) is a homogeneous complex Finsler space. Let G = A0(M, I, F ) and H be the
isotropy subgroup of G at some fixed point x in M. Then M = G/H . Define an automorphism
σ of G by σ(g) = σx · g · σ, g ∈ G. Then σ is an involutive automorphism of G and
K0

σ ⊂ H ⊂ Kσ , where Kσ is the subgroup of G consisting of fixed points of σ and K0
σ is the

identity component of Kσ . This means that (G,H) is a symmetric pair. Since H is compact,
(G,H) is a Riemannian symmetric pair. By the standard results on Hermitian symmetric
spaces (see [10], chapter VIII), we have

Theorem 4.1. Let (G/H, I, F ) be a globally symmetric complex Finsler space. Then there
exists a G-invariant Riemannian metric g on G/H such that (G/H, I, g) is a Hermitian
symmetric space.

Since the Hermitian symmetric spaces were completely classified by É Cartan [10],
theorem 4.1 reduces the problem of classification of symmetric complex Finsler spaces to
the problem of determining which Hermitian symmetric space admits an invariant non-
Riemannian complex Finsler metric (see the remark at the end section 3). Now we can
prove

Theorem 4.2. Let (G1/H1, I1, g1) and (G2/H2, I2, g2) be two Hermitian symmetric spaces.
Then on the coset space G1/H1 × G2/H2 there exist infinitely many non-Riemannian Finsler
metrics F which are invariant under G1 × G2 and make (G1/H1 × G2/H2, I1 × I2, F ) a
symmetric complex Finsler space.

Proof. Let o1, o2 be the origin of G1/H1,G2/H2 respectively and o = (O1,O2). For any
tangent vector y = (y1, y2) ∈ To(G1/H1 × G2/H2), yi ∈ Toi

(Gi/Hi), i = 1, 2, and any
integer s � 2, define

Fo(y) =
√

g1(y1, y1) + g2(y2, y2) + s
√

g1(y1, y1)s + g2(y2, y2)s .

Then Fo is a non-Euclidean Minkowski norm on To(G1/H1 ×G2/H2) which is invariant under
H1 ×H2. Hence it can be extended to a Finsler metric F on G1/H1 ×G2/H2 [8]. It is obvious
that F is non-Riemannian. Since g1, g2 are Hermitian metrics, for any a, b ∈ R, we easily see
that

Fo((a + bI)y) = Fo((a + bI1)y1, (a + bI2)y2) =
√

a2 + b2Fo(y).

Therefore F is a complex Minkowski norm. �

The irreducible cases can also be completely settled. First we prove

Theorem 4.3. Let G/H be an (compact or noncompact) irreducible Hermitian symmetric
space. Then there exists an invariant complex structure I on G/H such that (G/H, I, F ) is a
symmetric complex Finsler space for any G-invariant Finsler metric on G/H .

Proof. The only thing we need to check is that any invariant Finsler metric F on G/H must
be a complex Finsler metric with respect to the complex structure. We only treat the compact
case. The noncompact case can be proved using the duality. According to [10] (p 381), if
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Table 1. Irreducible symmetric complex non-Riemannian Finsler spaces.

Noncompact ones Compact ones Rank Dimension

AIII SU(p, q)/S(Up × Uq) SU(p + q)/S(Up × Uq) min(p, q) 2pq

BDI SOo(p, 2)/SO(p) × SO(2) SO(p + 2)/SO(p) × SO(2) 2 2p

DIII SO∗(2n)/U(n)(n � 4) SO(2n)/U(n)(n � 4) [ 1
2 n] n(n − 1)

CI Sp(n, R)/U(n)(n � 2) Sp(n)/U(n)(n � 2) n n(n + 1)

EIII (e6(−14), so(10) + R) (e6(−78), so(10) + R) 2 32
EVII (e7(−25), e6 + R) (e7(−133), e6 + R) 3 54

Note: p, q � 2.

G/H is a compact irreducible Hermitian symmetric space, then G/H can also be written as
U/K where U is a connected compact simple Lie group with centre {e} and K is a maximal
connected proper subgroup of U with a nondiscrete centre. Moreover, the centre of K,ZK

is isomorphic to the circle group S1. Therefore there exists an element of order 4, say j , in
K. Let I denote the induced linear transformation of Ad(j) to To(U/K). Then I 2 = −id

and it is true that I induces an invariant complex structure on U/K . Now suppose that F is
a U-invariant Finsler metric on U/K . Let a, b ∈ R, a2 + b2 �= 0. Then we assert that the
endomorphism a√

a2+b2
id + b√

a2+b2
I lies in the image of ZK under the inducing mapping (to

To(U/K)). In fact, since ZK � S1 and j is of order 4, we easily see that there exists x ∈ k

such that ZK = {exp tX|t ∈ R} and exp X = j . Since Ad(j) induces the complex structure
I on To(U/K), we easily see that Ad(exp(tX)) induces the endomorphism T (t) of To(U/K),
where

T (t) = etI = (cos t)id + (sin t)I, t ∈ R.

This proves our assertion. Now

F((aid + bI)y) = F

(√
a2 + b2

(
a√

a2 + b2
id +

b√
a2 + b2

I

)
y

)

=
√

a2 + b2F

((
a√

a2 + b2
id +

b√
a2 + b2

I

)
y

)

=
√

a2 + b2F(T (θ)y)

=
√

a2 + b2F(y),

where θ = arccos a√
a2+b2

and we have used the above assertion and the fact that F is invariant
under Ad(K). Thus we have proved that F is a complex Finsler metric on U/K . This proves
the theorem. �

Szabó [15] proved that on each irreducible globally symmetric Riemannian manifold
G/H there exist infinitely many invariant Finsler metrics on G/H if rank G/H � 2 and
there does not exist any non-Riemannian invariant Finsler metric on it if rank G/H = 1. On
the other hand, the irreducible Hermitian symmetric spaces were completely classified by É
Cartan (cf [10], p 518). Combining these results with theorem 4.3 we get a classification of
irreducible symmetric complex non-Riemannian Finsler spaces (table 1).

Theorem 4.4. Let G/H be an irreducible Riemannian symmetric space. If G/H admits an
invariant complex structure I and a non-Riemannian Finsler metric F such that (G/H, I, F )

is a symmetric complex Finsler space, then G/H must be one of the manifolds in table 1.
Furthermore, on each manifold in table 1 there exist infinitely many invariant complex non-
Riemannian Finsler metrics.
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[15] Szabó Z I 1981 Positive definite Berwald spaces Tensor NS 38 25–39

http://dx.doi.org/10.1088/0305-4470/37/34/004
http://dx.doi.org/10.1007/s10711-005-2529-9

	1. Introduction
	2. Homogeneous complex Finsler manifolds
	3. Minkowski representation of Lie groups and Lie algebras
	4. Complex structures
	5. Symmetric spaces
	Acknowledgments
	References

